
banner above paper title

Experience report: Haskell and mathematics

Henning Thielemann
Martin-Luther-Universiẗat Halle-Wittenberg, Germany

henning.thielemann@informatik.uni-halle.de

Abstract
This report describes experiences with doing mathematics using
Haskell in the fields of algebra and signal processing. It discusses
advantages of several Haskell features and problems e.g. with re-
spect to type classes and implicit contexts, that arise in mathemati-
cal applications. We also propose solutions including references to
the Numeric Prelude project.

1. Introduction
With respect to functional programming languages and mathemat-
ics there is a paradoxical situation: On the one hand, functional lan-
guages are mathematically oriented: They allow formulating algo-
rithms in terms of equations rather than commands, their notion of
functions is close to the mathematical one (referential transparency)
and allows for equational reasoning, functions of higher order like
operators in functional analysis can be used. Pure functional lan-
guages allow lazy evaluation, which in turn let us work with in-
finite data structures like real numbers, continued fractions, time
series, sequences, power series. [Hug89] On the other hand, func-
tional languages are not very widespread amongst mathematicians.
Computational mathematics is dominated by insecure machine ori-
ented languages like Fortran, C, C++ if speed counts, by numeri-
cal scripting packages (MatLab, SciLab, Octave, R) if development
time counts, and by Computer algebra systems (MuPAD, Axiom,
Mathematica, Maple, Derive) for simplifications of integrals and
other expressions.

2. Why Haskell is good for doing mathematics
With respect to strong and statically typed languages like Modula
and Ada, MatLab users like to object that they do not allow for
interactive program development, that is: enter a command, see the
result, if the command was useful, copy it into an editor and create
the program step by step this way. Indeed interactive modes for
compilers of imperative statically typed languages are a challenge
and to the best of our knowledge, they do not exist, or are rarely
used. Programmers of statically typed languages complain about
the missing types in scripting languages and the resulting fragility
of large libraries. Here common Haskell compilers like Hugs and
GHC fill a gap: You can interactively edit and run commands, copy
useful pieces to a text editor, while the type signature gives an idea

[Copyright notice will appear here once ’preprint’ option is removed.]

what the code is about and static type checking ensures that you
can refactor the code later in a safe manner.

Haskell can (still) not compete with specialized software in
many fields of mathematics, due to the lack of sophisticated li-
braries. Common computer algebra systems are great in symbolic
integration, expression simplification and symbolic solution. Nu-
merical linear algebra packages achieve high accuracy for impre-
cise number representations at high speed. However Haskell al-
lows applications that are not possible with those specialized pack-
ages. Its strength is the lazy evaluation and the flexibility to com-
bine many applications. With implementations of matrices and
lazy computable reals you can immediately do matrix computa-
tions over computable reals, which is possible with neither com-
mon computer algebra systems, nor numerical linear algebra pack-
ages. [TT06, Kar04] With an implementation of power series you
can immediately work with polyphase matrices as needed in signal
processing, you can solve differential equations by solving fixed
point equations on lists. [Kar00] The same applies to time series
and recursive filters. [Don03, Thi04, Thi07]

Recursive filters for signal processing can be understood as the
solution of a differential equation. To illustrate the elegance of
Haskell for this kind of problems, here is a simple example for the
approximative solution of an ordinary differential equation of the
form y′(x) = f(x, y(x)) by the explicit Euler method in terms of
a time series. The formulation of the problem is almost the solution
in Haskell.

integrate :: Num a => a -> [a] -> [a]
integrate = scanl (+)

eulerExplicit :: Num a =>
(a -> a -> a) -> a -> a -> [a]

eulerExplicit f x0 y0 =
let x = iterate (1+) x0

y = integrate y0 y’
y’ = zipWith f x y

in y

The solution of a differential equation in terms of a power series is
equally simple.

Another important mathematical application are theorem
provers. Haskell cannot replace sophisticated proof assistants, but
with QuickCheck [CH00] you can quickly do tests on plausibility.

There are also some minor features of Haskell which neverthe-
less bring Haskell programs close to mathematics: Number literals
can be used for every type where it makes sense. This way we have
common numeric literals but yet clean type distinction. If numbers
with higher precision than that ofDouble are needed, there is no
need to extend the language. The same applies to rational numbers,
complex numbers, quaternions, residue classes and other number
types.

In comparison to C++ the transparent integration of infix op-
erators in Haskell is certainly another small but useful feature. Al-

short description of paper 1 2007/8/31

though the introduction of new infix operators should be considered
thoroughly, it is e.g. certainly better to define new multiplication
operators for matrix-vector-multiplication than using the one sign
* for each operation that is loosely associated with multiplication.
Nevertheless it is a pity, that in Haskell 98 operator precedences
are defined by numbers, rather than relations like “(*) binds more
tightly than(+)”. Relative precedence definitions would also allow
to define unrelated infix operators as being unrelated.

3. How Haskell becomes better for doing
mathematics

3.1 Numeric Prelude

The numerical type class hierarchy is certainly one of the most
criticized points of Haskell 98. There are several counterpropos-
als like those of MECHVELIANI [Mec06] and THURSTON [TT06],
where we want to focus on the latter one here. The Numeric Prelude
project initiated by DYLAN THURSTON provides a more mathe-
matically oriented replacement for the numerical type class hier-
archy of Haskell 98. It was also extended by modules for several
mathematical objects, which allow to study whether the hierarchy
is useful.

3.2 Number literals

As noted, polymorphic number literals are good thing for doing
mathematics, but when it comes to Numeric class replacements
its design leads to a problem: Since(2::Integer) will be ex-
panded tofromInteger (2::Integer) there is the danger of
getting lost in infinite recursion. If you don’t use the standard
Prelude and thus have two different versions offromInteger,
then there is a conflict. It seems more reasonable for us to have
two types of literals: Monomorphic literals forInteger, say#2,
and polymorphic literals for all numeric types, like2. This way
myFromInteger #2 could be written in a context, where the glob-
ally visiblefromInteger is not the required one.

3.3 Powers

It is a good thing, that there are different operators for the power in
Haskell 98. Although mathematical notation does not distinguish
them, strict mathematics need the distinction. E.g. cf. to the discus-
sion whether3

√
−1 should be defined or not. It must also be thought

about replacing

(**) :: Floating a => a -> a -> a

by a power function like

(^?) :: (PositiveReal a, Exponent b) => a -> b -> a

whereb can be even a matrix type. In Haskell 98(**) is defined
for Float, Double, and their complex counterparts, where the
complex power is used only rarely. Actually, we needed a power
with both complex basis and complex exponent only once so far,
namely for the CAUCHY wavelett 7→ (1−i·k·t)(−1/2+µ2/k+i·µ1),
and(**) could not be used due to its discontinuities.

3.4 Algebraic structures vs. type classes

In Haskell algebraic structures are represented by type classes.
However, those two concepts do not match exactly. Firstly, type
classes can not enforce laws on their methods. This feature would
be certainly easy to add, if the laws could be formulated as compiler
optimization rules or if extended static checking becomes avail-
able ([Xu06]). But the common arithmetic laws do not apply to
imprecise numbers (Section 3.7) and deferred computations (Sec-
tion 3.8). Secondly, we lay some more interpretation in operator
symbols. E.g. both(Q \ {0}, 1, ·) and (Q, 0, +) are groups, but

we prefer different symbols for the neutral elements and the group
operations. So it arises the question, whether aGroup type class
should use+, * or a different symbol for the group operation, and
whether it should be super class to say theRing type class.

3.5 Implicit contexts

The referential transparency of Haskell makes it necessary to re-
veal all data dependencies. This is an important thing for doing
mathematics, e.g. for equational reasoning, but sometimes it would
be nice to hide some information which is the same for a bundle
of operations. Computations with residue classes are usually all
performed with respect to the same divisor (which can also be a
polynomial or a GRÖBNER basis), computations with fixed point
numbers are performed with the same precision, computable reals
in a positional number representation all have the same basis and
addition of finite vectors is only possible for matching dimensions.
Imperative languages could hide such informations in global vari-
ables but this in turn is error-prone, not thread-safe and makes it
difficult to run different computations in different contexts in an
interleaved way.

There are several possible solutions, but none of the existing
ones is satisfying:

• Objects are defined as reader monads.

newtype T context a = Cons (context -> a)

Then sharing of results is difficult and equality tests cannot have
typeT context a -> T context a -> Bool.

• The reader monads could provide operations that are adapted to
the context.

do (zero’,(+~),(-~),negate’) <- getAdditiveOps
return (1 +~ 2 -~ 3)

This is cumbersome and disallows using functions that rely
(in this example) on methods of theAdditive class (part of
Numeric Prelude).

• Phantom types: It would be nice to add context information to
the type.

newtype T basis a = Cons [a]

class Basis basis where
getBasis :: T basis a -> Int

data Ten = Ten

instance Basis Ten where
getBasis _ = 10

add :: T basis a -> T basis a -> T basis a
add x y = reallyAdd (getBasis x) x y

This is a good solution, if the context has a simple structure, a
fixed type and does not depend on IO actions. More sophisti-
cated solutions need type hacks or locally declared type class
instances [KS04]. However, the latter one is not implemented
anywhere, and not much is known about its interaction with
other type extensions.

3.6 Vector Spaces vs. Vectors

For vector computations Numeric Prelude started with a multi-
parameter type classVectorSpace a v (to be precise, the main
class definition is forModule a v andVectorSpace extends this
from rings to fields), wherea is the scalar type andv the associated

short description of paper 2 2007/8/31

vector type. This type class is very good for studying the advan-
tages and disadvantages of multi-parameter type classes.

TheVectorSpace type class cannot use functional dependen-
cies and thus type inference often fails and the user has to attach
type hints. Ifa is of the Field type class, one usually also ex-
pects aVectorSpace a a instance, which has to be implemented
individually for each typea. Then for each algorithm for fields
you have to decide, whether to implement that algorithm also for
VectorSpace a v. Since the general implementation for vector
spaces cannot replace the basic implementation over fields, you
usually end up implementing the algorithm twice. This was done
sometimes in Numeric Prelude, but is obviously unsatisfying.

An advantage of this approach is, that if you have instances for
VectorSpace a [v] and VectorSpace a (v0,v1) then you
have automatically instances forVectorSpace a [(v0,v1)].
The big drawback is, that the scalar typea can hardly be a com-
plex type, like complex numbers. Otherwise you risk overlapping
and undecidable instances.

A simpler approach which works with Haskell 98 is aVector
type constructor class for type constructors like[]. However, then
all restrictions on the element typea have to be put in the signa-
tures ofVector methods. These are sometimes too weak. Imagine
polynomials where leading zero coefficients shall be eliminated af-
ter addition. This requires anEq instance and adding this to the
Vector addition method signature, excludes vectors of functions,
because functions cannot be of classEq. You have also to duplicate
the addition and subtraction methods from theAdditive class in
theVector class.

3.7 Imprecise number types vs. exact number types

In the Haskell 98 type class hierarchy and also in the current Nu-
meric Prelude, the same type classes are used for both precise types
like Rational and their approximate counterparts likeDouble.
However numerical algorithms need optimization for accuracy and
speed, while these optimizations are often not possible for pre-
cise types. There are complications even for simple types: For the
division of complex numbers, you have to compute the expres-
sion

√
a2 + b2, which can cause an intermediate overflow, say for

a = 10300 andb = 10300 for Double values, although the result
can be presented asDouble. It is simple to avoid the problem for
floating point types, but it is not simple for general types. Another
example are determinants, which are usually implemented using
matrix factorizations for floating point types (cubic run-time), but
need asymptotically slower algorithms for rings (fourth power run-
time, [Rot01]).

In Numeric Prelude we solved such problems by new type
classes which work around these problems. This means that for
declaring one instance (sayField on complex numbers) you need
to instantiate helper type classes, whose implementations essen-
tially choose an appropriate default implementation. A radical ap-
proach would be the maintenance of two type hierarchies: One for
imprecise number types and one for exact number types, which
guarantee some algebraic laws.

3.8 Immediate computations vs. computation planning

Embedded domain specific languages are a very popular applica-
tion of Haskell and it is very common to map numerical opera-
tors to their counterparts in the wrapped language, see for instance
MetaPost [Hob92] (wrapper functionalMetaPost [Kor98]), CSound
[Ver] (wrapper Haskore [HMGW96]), SuperCollider [McC96]
(wrapper HSC [Dra]). However, this way computations are not
performed immediately but are deferred to the wrapped language.
This way, sub-expressions cannot be shared usinglet, the wrapped
language may introduce side-effects and fundamental laws do not
hold. E.g. the Haskell expressionsa+b andb+a don’t denote the

same, because the generated foreign expressions are not the same.
One might argue, that theymeanthe same, however, writing an
equality test for these types means implementing a full blown com-
puter algebra system, and in the whole the problem is undecidable.
Cf. to the missing(==) definition in the situation of implicit con-
texts in Section 3.5.

In EDSLs usually new relations andif constructs are defined
that defer the computation to the wrapped language. Again, the
question shall be raised, whether the mentioned problems justify
another parallel type class hierarchy.

3.9 Typesetting Haskell programs as mathematical formulas

It would be very nice to use Haskell as the language in LaTeX for
type-setting formulas. It would then be possible to actually use the
mathematics described in a paper (if the source code is available)
and it would be possible to track simple mistakes by Haskell’s syn-
tax parser, type checker and eventually QuickCheck. Remember,
that LaTeX even does not check for matching parentheses.

The preprocessor lhs2TeX actually already supports type-
setting Haskell code in math mode. However the capabilities of
converting prefix functions into infix operators and vice-versa in-
cluding automatic insertion of parentheses and automatic layout are
very limited.

3.10 Subtypes

The Pascal family of languages and Ada support subranges, theo-
rem provers support even more general subtypes. This would be
great to have in Haskell in order to express conditions on the
operands, like “divisor must be non-zero”, “cardinality is non-
negative”, “operands of division must be divisible”, “vector compo-
nent index must fit vector dimension”. Today we can define distinct
types withnewtype whose constructing functions verify certain
conditions. However these conditions cannot be checked statically,
and you have to convert numbers of such types frequently, because
e.g.a*b with a :: Double andb :: PositiveDouble is not al-
lowed (and it is generally a good thing that multiplication enforces
equal operand types in order to let type inference work). Again,
extended static checking ([Xu06]) would help here.

4. Conclusion
All problems sketched above should not make us forget that prob-
lems in other languages are even worse. Even in more recent im-
perative languages like Java it is difficult to statically enforce type
constraints that can be done with type variables and type classes
in Haskell. Or consider C++, which is widely used for mathemat-
ics, although you even have to cope with memory management and
segmentation faults if you want to test new mathematical ideas.

That is, Haskell performs already good in doing mathematics,
but, as always, it could still do better.

References
[CH00] Koen Claessen and John Hughes. Quickcheck: A

lightweight tool for random testing of haskell programs.
In International Conference on Functional Programming,
ICFP 2000, Montreal, Canada, 2000.

[Don03] Matthew Donadio. Haskell DSP.http://haskelldsp.
sourceforge.net/, 2003.

[Dra] Rohan Drape. HSC3: Haskell interface to Super Collider 3.
http://slavepianos.org/rd/f/207949/.

[HMGW96] Paul Hudak, T. Makucevich, S. Gadde, and B. Whong.
Haskore music notation – an algebra of music.Journal of
Functional Programming, 6(3), June 1996.

short description of paper 3 2007/8/31

[Hob92] John D. Hobby. A user’s manual for MetaPost. Computing
Science Technical Report no. 162, AT&T Bell Laboratories,
Murray Hill, New Jersey, 1992.

[Hug89] John Hughes. Why functional programming matters.The
Computer Journal, 32(2):98–107, 1989.

[Kar00] Jerzy Karczmarczuk. Lazy processing and optimization of
discrete sequences. Technical report, Dept. of Computer
Science, University of Caen, France, 2000.

[Kar04] Jerzy Karczmarczuk. Most unreliable technique in the world
to computeπ. Technical report, Dept. of Computer Science,
University of Caen, France, 2004.

[Kor98] Joachim Korittky. functional METAPOST: Eine Beschrei-
bungssprache für Grafiken. Master’s thesis, Rheinische
Friedrich-Wilhelms-Universiẗat Bonn, December 1998.

[KS04] Oleg Kiselyov and Chung-chieh Shan. Functional pearl:
Implicit configurations – or, type classes reflect the values of
types. InProceedings of the 2004 Haskell Workshop. ACM
Press, 2004.

[McC96] James McCartney. Super Collider.http://www.
audiosynth.com/, March 1996.

[Mec06] Serge D. Mechveliani. Haskell and computer algebra:
Basic algebra library proposal. Technical report, Programm
Systems Institute, Pereslavl-Zalessky, Russia, 2006.

[Rot01] Günter Rote. Division-free algorithms for the determinant
and the pfaffian: Algebraic and combinatorial approaches. In
H. Alt, editor,Computational Discrete Mathematics, LNCS
2122, pages 119–135. Springer-Verlag Berlin Heidelberg,
2001.

[Thi04] Henning Thielemann. Audio processing using Haskell.
In Gianpaolo Evangelista and Italo Testa, editors,DAFx:
Conference on Digital Audio Effects, pages 201–206.
Federico II University of Naples, Italy, October 2004.

[Thi07] Henning Thielemann.Haskell Communities and Activities
Report, chapter Audio processing. http://www.haskell.org/,
12th edition, June 2007.

[TT06] Dylan Thurston and Henning Thielemann.Haskell
Communities and Activities Report, chapter Numeric
Prelude. http://www.haskell.org/, 10. edition, June 2006.

[Ver] Barry Vercoe. CSound.http://www.bright.net/
~dlphilp/linux_csound.html.

[Xu06] Dana N. Xu. Extended static checking for haskell. In
Haskell Workshop 2006, Portland, Oregon, USA, September
2006.

short description of paper 4 2007/8/31

